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Objective

The purpose of this experiment was to observe the time-decay of the emission of radiation and to

experimentally calculate the decay constant for 56Ba
137m

Theory

Radioactive decay is not a deterministic function in time, which means that we cannot define

precisely when a radioactive decomposition will take place. However, statistically speaking, we

can define a probability per unit time for a radioactive decay. Using this time-dependent rate

of decay, we can define a Time period within which the initial sample will have decayed to half

of its initial amount. Given a sample with N0 radioactive nuclei at time t0, and shifting our

time coordinates to t0 = 0. The change in the number of radioactive nuclei (and therefore the

radioactive nuclei that are stabilized in an infinitessimal time interval dt) is given by dN = −λNdt.
On integrating, this gives us:

lnN = −λt+ lnN0 =⇒ N = N0e
−λt

Since the decay is exponential with time, we can find the time in which the radioactive nuclei will

reduce to half its initial number using:

T1/2 =
ln(N0/N)

λ
=

ln 2

λ
=

0.693

λ

Experiment and Setup

The radioactive source for this experiment contains a small quantity of 55Cs
137 which is radioac-

tive and has a half-life of 30.1 years. This isotope of Cesium emits a β− particle and 94.6% of

the time decays to a metastable state of Barium: 56Ba
137m. This Barium isotope emits a 0.662

MeV gamma ray photon when it decays to ground state. The half life of this Barium isotope is

153 s and reaches its equilibrium amount in 4-5 half-lives (10-12 min). When Barium is needed

for the experiment, it can be flushed from the Cesium source using the “eluting” solution - this

solution removes the radioactive Barium from the Cesium source without removing Cesium. Once

Barium acheives it’s equilibrium state, more must be flushed out from the source to obtain results

for this experiment. This makes it important to count decays almost immediately after drawing

the barium solution.

Procedure

1. The Eluting solution was passed through the Cesium source in a controlled amount (seven

drops), using a syringe, to produce a desirable quantity of metastable Barium.

2. The Barium source was placed under the counter window.

3. The Geiger counter was set up to measure radiation counts every 6 seconds (0.1 minute).

1



4. The counter reading was recorded every thirty seconds (from tha start of one to the start of

the other) for the 6 minutes that followed.

5. The strength of the Barium solution was measured for 1 min, and this strength was recorded.

6. The Barium solution was removed from the counter and a baseline “background radiation”

was measured. Since the strength of the solution had already fallen significantly (more than

2 half-lives after preparation), the distance of the solution from the counter should make the

radiation effect of the solution on the Geiger counter measurements negligible.

Data

The Voltage of the Geiger counter was 400V

After 1 min, the Geiger counter measurement for ambient radiation was 20

After 1 min, the Geiger counter measure for the Barium solution alone was 274

seconds counts

30 1136

60 951

90 804

120 687

150 611

180 489

210 475

240 339

270 371

300 283

330 249

Data Analysis

Figure 1: Natural log of Barium Geiger counter measurements against time, with errorbars to
account for uncertainty and background radiation measurements
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As expected, a certain amount of background radiation was recorded along with the measurements.

The uncertainty in each measurement was estimated based on the initially recorded background

radiation.

Since we know:

λ =
ln(N0/N1/2)

T1/2
=

ln(N0/Nother)

t

We can measure the decay constant for the Barium source using the time taken between recorded

data points. This gave us a decay constant of 0.0045s−1 From this we can find an experimental

estimate for the half-life of Barium:

T1/2 =
0.693

λ
= 154.s

Error Analysis

All uncertainties were propagated using:

δy =

√√√√ n∑
i=1

(
∂y

∂xi

)2

δ2xi

So:

δln(N) =

√(
1

N

)2

δ2N =
1

N
δN

And, assuming the uncertainty in the time measurement was insignificant relative to the uncer-

tainty in the measurement of the radiation counts, we can say:

δλ ≈

√(
1

N1
δN

)2

+

(
1

N2
δN

)2

= δN

√(
1

N1

)2

+

(
1

N2

)2

= 0.0002 ≤ δN

From which the uncertainty in the half-life is:

δτ =
0.693

λ2
δλ = 9s

Questions

How far away does the source have to be before its presence makes no difference?

Once the Barium solution was ≈ 0.6m away from the Geiger counter, it’s presence made a negligible

difference to the Geiger counter reading.

How does the strength of the source fall off with distance? Discuss.

The strength of the source (measured in terms of number of counts recorded by the geiger counter)

falls with increase in distance from the source because the mean free path of Gamma rays of energy

between 100 MeV and 1 GeV is ∼ 10 cm
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Conclusions

In this experiment, we observed the decay of radiation with time and determined taht the half-

life of the sample was ≈ 154.6s which placed the accepted value of the half-life well within our

calculated range of uncertainty. We confirmed that the data we collected corresponded to the

expected exponential time-decay model and were able to study the uncertainty in the logarithmic

plot against the line of best fit.

The background radiation in the lab was found to be 20 counts over a minute, remaining con-

sistent over successive trials allowing us to use this as a basis for uncertainty estimation - if the

background radiation was consistent, this number of counts could be used as a reasonable measure

of uncertainty since this then accounts for the changes in background radiation, uncertainty in

time-measurement, and apparatus uncertainty.
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